

IAC 2020 – Cyber-Edition 12.-14. October 2020

Etienne Dumont Peter Rickmers

Introduction & the RLV Roadmap

- RLV key to future space transportation
 - · Different approaches
 - Winged (VTHL)
 - Toss-Back (VTVL)
 - · DLR follows joint roadmap
 - Both types in development as technology demonstrators
 - Various system studies & ancillary technology to support RLV efforts

Reusable Launch Vehicle Technology Demonstrators

ReFEx

Winged-RLV Corridor – Important for any Winged-RLV

ReFEx - Main Project Goals

ReFEx...

- ...is a technology demonstrator for a winged reusable first stage
- ...will traverse a large flight envelope of hyper- / super- / transand subsonic flow
- ...will perform altitude and velocity management using a multi AoA & bank angle flight profile
- ...will demonstrate maneuverability by flying at least a 30° heading change
- ...will use GNC capable of autonomous on-board trajectory generation and optimization
- ...will demonstrate the seamless transition from extra- to intraatmospheric flight
- ...will use advanced sensors (FADS & FOS) for flight data acquisition
- ...will increase DLRs know-how of winged RLVs
- WILL LAUNCH IN 2023

ReFEx – Launch & Re-Entry Konfiguration

ReFEx - Mission Events

ReFEx - Conclusion / Outlook

- ReFEx has a long development history with many design challenges addressed
 - · Already valuable lessons learned from the current design and its evolution
- ReFEx reached PDR Status May 2019
 - A delta PDR with some remaining items to be closed is scheduled for Q3 2020
- ReFEx is currently progressing toward System CDR in Q2 2021
- Flight is scheduled for 2023
 - Valuable flight data and experience toward winged RLV stages
- · Will help informed decisions about future European reusable launcher

CALLISTO

CALLISTO - Cooperative Action Leading to Launcher Innovation in Stage Toss back Operations

• DLR, CNES and JAXA cooperation initiated in June 2017. Currently finishing phase B.

Main goals

- Collect technical and economic data relevant to an operational RLV
- Technology demonstrator for a vertical take-off, vertical landing rocket first stage e.g.
 - · Landing system
 - GNC
 - · Propellant management
 - Reusability
 - · Accurate landing with high thrust to weight ratio
- Up to 10 flights with the same vehicle
- Flight envelope:
 - · Super- / Trans- and Subsonic
- · Limit refurbishment effort and time
- Increase of RLV know-how and refine analysis tools for RLV design and development
- Test campaign in Kourou planned 2022

ALS: Approach & landing system

FCS/A: Aerodynamic control surfaces FCS/R: Reaction

control system

FCS/V: Thurst vector

control

FDR: Flight data

recorder

FNS: Flight

neutralization system **G&C**: Guidance and

control

TM/TC: Telemesure

and telecommand

VEB: Vehicle Equipment Bay

CALLISTO – a technology demonstrator for future RLV

Rely on European and Japanese heritage and know-how Integral tanks

Pneumatically deployable landing system

Three flight control systems

- 40 kN class LOx/LH2 expander bleed engine
 - Re-ignitable
 - Continuously throttleable (down to less than 40 % of the max. thrust)
 - TVC
- RCS: H2O2 Reaction Control System
- Four deployable aerodynamic control surfaces

GNC relying on hybrid navigation (DGNSS, radar altimeter, ...) convex optimisation, ...

GLO mass about 3500 kg

Diameter: 1.1 m

Length: 14m

CALLISTO Incremental Demonstration Logic

- More than forty manoeuvers and events of interest identified
- Implementation of limited new features at each flight to limit risks
- Investigation at technological and operational level of reutilisation after each flight
- Up to 10 flights

CALLISTO - Conclusion / Outlook

- Sharing of tasks between the three international partners consolidated
- · Launch place has been selected and flight safety analyses are on-going
- Numerous engineering tests on-going/about to start
- · Main engine test on-going
- PDR-Product planned for early summer 2021
- Integration and hot firing tests are planned in Japan
- Combined tests, risk reduction flights and demonstration flights are planned for 2022 in Kourou
 - Valuable flight data and experience toward VTVL stages and in general reusable vehicle ground operations
- Will help informed decisions about future European reusable launcher

RLV Demonstrators – Conclusion

- DLR is in a unique position:
 - Two technology demonstrator projects with different approaches
 - Allows for **real comparison** of pros & cons for each approach
 - Valuable lessons learned for future European RLVs (vehicle, ground segment and operations)
 - · Reduction of development risk for operational vehicle through testing at smaller scale
 - Valuable dataset to improve the validity and accuracy of system studies
 - Open to join larger RLV initiatives in Europe with expert advice gained from flight experiments

